Advanced Crushing For Today’s Tough Specs

Producing High Quality Products Using Cone crushers
MAXIMIZING
CONE CRUSHER
PERFORMANCE
Before we get started on cones
Basic Terminology

- CSS
- Stroke
- Speed
- Bowl Float / Ring Bounce
- Tramp
- Choke Feed
- Reduction Ratio
- Raw feed
- Standard vs. Shorthead
- P80
- Flats and elongated
- Autogenous
- Open / Closed Circuit
- Segregation
Understanding Crusher Limits

Power Limited:

- Every machine is designed for a maximum power draw
- Typically Power draw will increase as:
 - Feed rate increases
 - Finer material is required
- Exceeded when crusher draws more power than rated for, stalling, bowl float, over amping may occur
Understanding Crusher Limits

Volume Limited:

- A combination of chamber volume, crusher speed and stroke determine this.
- This determines maximum throughput.
- Choke fed condition typically ensures operation at volumetric limit.
- Exceeded when feed material overflows.
- Overflow chutes are preferred.
Understanding Crusher Limits

Force Limited:

- Every machine is designed for a maximum crushing force
- Force increases as:
 - Feed rate increases
 - Finer material / tighter CSS
 - Higher reduction ratio
- Exceeded when adjustment ring bounces
RUN CRUSHERS UP TO, BUT NOT EXCEEDING LIMITS
Understand the application

- What do you want the machine to accomplish?
- Begin at the end......How do we know how to get there, if we don’t know where we are going?
- AGGFLOW is a guide
- Choose the correct manganese set up for success
- Involve factory support
- Finishing screening capacity
Crush in Stages

- Makes best quality product
- Evens out reduction ratio in each stage
- Better product shape
- Balance loads between stages
Understand Reduction Ratio

- Jaw .. 6 to 1
- Cone (SH) ... 6 to 1
- Cone (FH) .. 4 to 1
- V.S.I. (Gravels & Basalts) 6-8 to 1
- V.S.I. (Limestones) 8-10 to 1
- Hammermill 20 to 1
- Limemill 30 to 1
- H.S.I. ... 10 to 1
Feed From Surge Piles/Bins

- Steady and consistent feed rate
- Easiest way to achieve a consistent choke fed condition
- Inconsistent or surges in feed rates can lead to inefficient crushing
- Best way to ensure consistent product gradation
Choke Fed Advantages

- Fewer peaks and valleys will improve:
 - Production rate (increase by 5%)
 - Product shape
- Consistent power draw
- Rock on rock crushing/grinding
- Consistent product gradation
- Limits dust being generated
Adjustment Ring Movement / Bounce

- What to do if ring is bouncing
 - Open crusher setting
 - Decrease feed rate

- Reasons for ring bounce:
 - Tramp events
 - Poor feed distribution
 - Feed segregation
 - Too many fines in feed
 - High moisture content
 - Wrong liners
 - Crusher setting too tight
 - Reduction ratio too high
Adjustment Ring Movement / Bounce

- What will ring bounce do:
 - Cause undue strain on entire crusher
 - Wastes power
 - Can lead to expensive repairs:
 - Mainframe
 - Pin wear
 - Tapered seating surface wear
 - Seat liner wear
 - Tramp release cylinder damage
 - Can also cause cracks in mainframe, head and/or bowl
Maintain Proper Cavity Levels

- Consistent product quantity
- Balanced circuit
- Proper cavity level:
 - Up to feed plate in secondary applications
 - Above feed plate in tertiary applications
 - Varying levels result in inconsistent:
 - Product shape
 - Product quantities
 - Most important for tertiary crushers
Feed Distribution

- Fall vertically onto center of crushing cavity
- Poor distribution = Unbalanced loads in cavity
- Velocity of feed into light side of cavity
 - Decrease in voids in cavity
 - Packing
 - Pancaking
 - Erratic power draw
 - Adjustment ring movement
Feed Segregation

- Raw feed and recirculated material should enter the crusher together and mixed as much as possible.
- Having a coarse side and fine side will create unbalanced loads in cavity.
- Decrease in voids in cavity:
 - Packing
 - Pancaking
 - Erratic power draw
 - Adjustment ring movement
Feed Material Height

- Vertically feed to center of crusher
 - Proper distribution of feed
 - Minimizes risk of segregation
- 3’ max feed fall distance
- Too much drop height causes:
 - Power overload conditions
 - Force overload conditions
 - Poor productivity
 - Premature wear and tear
Operating at Consistent Setting

- Ensures a balanced circuit
- Consistent product quality and quantity
- Check and adjust setting frequently
- Several small adjustments throughout shift
- Avoid one large adjustment at end of shift
- Automation can help
Operating at Correct Speed

- Countershaft speed = Number of blows
- If reduced below recommended RPM:
 - Performance adversely affected
 - Can cause stalling
- If increased:
 - Balance affected
 - Cooling of lube oil adversely affected
Correct Liners for application

- Range from extra-fine to extra-coarse
- Different max feed sizes per configuration
- Liner selection based on feed, not product size
- Ideally you would like to crush material throughout the entire length of the chamber
Feed Size Considerations

- Feed shape:
 - Round feed
 - Gravel, pebbles
 - Tendency to “boil” (harder to nip)
 - Select liner with aggressive nip angle
 - Slabby feed fits more easily into cavity

- Crusher Speed
 - Fast speeds make it difficult to enter cavity
 - Slow speeds = drop further into cavity
Timely Liner Changes

- Risks of pushing too long:
 - Poor production rates
 - Feed opening decreases late in life
 - Cupped at bottom late in life
 - Mechanical problems
- Expected Cone Liner Utilization: 50% to 60%
- Thin liners flex; Seating surface damage
Liner Life Tips

- Break-In procedure
- After new liner installation:
 - 50% power, 65% amps, Full cavity for 6 hours
 - 75% power, 80% amps, full cavity for 2 hours
 - 100% power, 100% amps from this point on
- Increases liner life as much as 30%
Automation

Most systems should monitor:

▪ Tank – return / supply / countershaft temps
▪ Lube / clamp / tramp pressure
▪ Lube filter condition
▪ Crushing force
▪ Crusher cavity level
▪ Main motor current or power draw
▪ Crusher setting
▪ Lube oil tank level
▪ Hydraulic tank level

Think of it as an insurance policy for your machine!
Tramp Iron Events

- Many suppliers require the use of magnets or detectors in order for the warranty to be activated.
- Can damage backing material, liners become loose.
- Costly damage to bearings, bushings and main frame components.
Preventative Maintenance

- Fully read and understand the operations and maintenance manuals for the machine
- Establish daily, weekly, monthly and yearly schedules for inspection/maintenance
- Keep a daily log book that tracks production rates, hours of operation, any maintenance performed
- Note anything unusual like, adjustment ring movement, crusher cavity level, noise levels, high vibration levels and high/low power draw
Utilize the factory resources

- Experienced, knowledgeable employees
- Fully trained on your equipment
- Immediate access to drawings, specs and other information
- Most provide 24/7/365 support
Don’t forget about your screens

- Inefficient screening can adversely affect your crushing capacity
- Screen width = tonnage
- Screen length = efficiency
- Crushers are the workhorses but screens are the cash register
- Oversizing screens allows for increases in production
Cone Summary

- Understand the crushers design limits
- Know and verify the application info
- Crush in stages for best results
- Understand reduction ratios
- Feed the machine from bins or feeders
- Choke feed whenever possible
- Avoid adjustment ring movement
- Maintain proper cavity levels
- Distribute feed evenly in the center
- Avoid segregated feed
- Maintain a consistent setting
- Maintain a consistent speed
- Choose the correct liner set up
- Change liners on time
- Use automation when possible
- Avoid tramp iron at all costs
- Set up a good PM schedule
- Utilize your factory resources
Questions?